B. Math. (Hons.) First year First Midsemestral examination 10th September 2018 Analysis I Instructor : B. Sury

Each question carries 12 marks.

Q 1.

(a) Determine the infimum and supremum of the set $\{\sin(n\pi/3) : n \in \mathbb{Z}\}$ and find a sequence from this set that converge to the infimum.

(b) If S, T are bounded subsets of real numbers, prove that the supremum of the set $\{s + t : s \in S, t \in T\}$ equals sup(S) + sup(T).

Q 2.

(a) Let a, b > 0. Find the limit of the sequence $(a^n + b^n)^{1/n}$ as $n \to \infty$. (b) Prove that the sequence $\{\sin(n)\}_n$ has an (infinite) subsequence $\{\sin(n_k)\}_k$ which is completely contained in [1/2, 1].

Q 3. Consider the sequence defined recursively by $x_1 = 1, x_{n+1} = \frac{x_n^3 + 1}{4}$ for all $n \ge 1$.

(i) Prove that $\{x_n\}$ is a decreasing, positive sequence bounded below.

(ii) Deduce that there exists $c \in (0, 1)$ such that $|x_{n+1} - x_n| < c/2$ for n > 1.

(iii) Deduce that $\{x_n\}$ is a Cauchy sequence.

(iv) State what the above process yields in terms of roots of the polynomial $x^3 - 4x + 1$.

OR

For a positive integer n, consider the arithmetic and geometric means of the n + 1 numbers 1 + 1/n (repeated n times) and 1 to deduce that the sequence $a_n = (1+1/n)^n$ is monotonically increasing. Similarly, for n > 1, looking at the arithmetic and geometric means of the n+1 numbers 1-1/n (repeated n times) and 1, deduce that $b_n = (1-1/n)^{-n}$ is monotonically decreasing. Finally, find a relation between b_{n+1} and a_n to deduce that both sequences $\{a_n\}$ $\{b_n\}$ converge and, converge to the same limit.

OR

If $\{a_n\}$ is a sequence of positive, real numbers such that the sequence a_{n+1}/a_n converges, prove that the sequence $a_n^{1/n}$ also converges, and converges to the same limit. Give an example to show that the converse may not be true.

Q 4. Prove that the series $\sum_{n=2}^{\infty} \frac{1}{n \log(n)}$ diverges and that $\sum_{n=2}^{\infty} \frac{1}{n \log(n)^{1.1}}$ converges.

Hint: You may prove and use the following result of Cauchy: If $a_n > 0$ and $\{a_n\}$ is decreasing, then

$$\frac{1}{2}\sum_{k=0}^{n} 2^{k} a_{2^{k}} \le \sum_{r=1}^{n} a_{r} \le \sum_{k=0}^{n-1} 2^{k} a_{2^{k}} + a_{2^{n}}.$$

OR

Consider the series $\sum_{n\geq 1} a_n$ where $a_n = 2^{(-1)^n n}$. Determine $\lim \inf |a_n|^{1/n}, \lim \sup |a_n|^{1/n}, \lim \inf |a_{n+1}/a_n|, \lim \sup |a_{n+1}/a_n|$. What does root test give? What does ratio test give?

OR

Using root/ratio/Raabe tests or otherwise, determine the convergence or otherwise of each of the following series (don't find the sum!):

- (a) $\sum_{n\geq 1} \frac{1}{\binom{2n}{n}};$
- (b) $\sum_{n \ge 1} a_n^3$ where $a_n = \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)}$.

Q 5.

(a) Define the interior S^0 and closure \overline{S} of a set $S \subset \mathbf{R}$.

(b) If $S_n (n \ge 1)$ are subsets of **R**, then prove that $(\int_n S_n)^0 \subseteq \int_n S_n^0$. Give an example to show that the inclusion could be proper.

(c) For any subset S of **R**, prove that $S^0 = (\bar{S}^c)^c$ where A^c denotes the complement of A.

\mathbf{OR}

(a) Write down a set of open intervals $I_n (n \ge 1)$ which cover (0, 1) such that finitely many of the I_n 's do not cover (0, 1).

(b) Suppose S is a set of real numbers such that whenever $S \subset \bigcup_{n \ge 1} U_n$ with U_n 's open, there is a positive integer n such that $S \subset \bigcup_{m=1}^n U_m$. Prove that S must be closed.

Hint: Show that S^c is open.